Identification of the Transferrin Receptor as a Novel Immunoglobulin (Ig)a1 Receptor and Its Enhanced Expression on Mesangial Cells in Iga Nephropathy

نویسندگان

  • Ivan C. Moura
  • Miguel N. Centelles
  • Michelle Arcos-Fajardo
  • Denise M. Malheiros
  • James F. Collawn
  • Max D. Cooper
  • Renato C. Monteiro
چکیده

The biological functions of immunoglobulin (Ig)A antibodies depend primarily on their interaction with cell surface receptors. Four IgA receptors are presently characterized. The FcalphaRI (CD89) expressed by myeloid cells selectively binds IgA1 and IgA2 antibodies, whereas the poly-IgR, Fcalpha/muR, and asialoglycoprotein receptors bind other ligands in addition to IgA. IgA binding by mesangial cells, epithelial cells, and proliferating lymphocytes is also well documented, but the nature of the IgA receptors on these cells remains elusive. A monoclonal antibody (A24) is described here that specifically blocks IgA binding to epithelial and B lymphocyte cell lines. Both the A24 antibody and IgA1 myelomas bind a cell surface protein that is identified as the transferrin receptor (CD71). The transferrin receptor selectively binds IgA1 antibodies, monomeric better than polymeric forms, and the IgA1 binding is inhibitable by transferrin. Transferrin receptor expression is upregulated on cultured mesangial cells as well as on glomerular mesangial cells in patients with IgA nephropathy. The characterization of transferrin receptor as a novel IgA1 receptor on renal mesangial cells suggests its potential involvement in the pathogenesis of IgA nephropathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absence of CD89, polymeric immunoglobulin receptor, and asialoglycoprotein receptor on human mesangial cells.

IgA nephropathy (IgAN) is characterized by raised serum IgA and predominant mesangial IgA deposits of polymeric nature. The expression of IgA receptor molecules in white blood cells and glomerular mesangial cells has recently attracted much attention in relation to the uptake of IgA by these cells. This study investigates the expression of IgA Fc receptor (Fc alphaR1 or CD89), asialoglycoprotei...

متن کامل

Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy.

IgA nephropathy (IgAN), the most common primary glomerulonephritis in the world, is characterized by IgA immune complex-mediated mesangial cell proliferation. The transferrin receptor (TfR) was identified previously as an IgA1 receptor, and it was found that, in biopsies of patients with IgAN, TfR is overexpressed and co-localizes with IgA1 mesangial deposits. Here, it is shown that purified po...

متن کامل

Expression of immunoglobulin A in human mesangial cells and its effects on cell apoptosis and adhesion

IgA nephropathy (IgAN) is characterized by predominant IgA deposition in the glomerular mesangium. It has been considered that the deposited IgA is synthesized by B cells, although recent reports have suggested the implication of other cell types. Therefore, the present study investigated whether glomerular mesangial cells could produce IgA by themselves. Semi‑quantitative reverse transcription...

متن کامل

Transglutaminase is essential for IgA nephropathy development acting through IgA receptors

IgA nephropathy (IgAN) is a common cause of renal failure worldwide. Treatment is limited because of a complex pathogenesis, including unknown factors favoring IgA1 deposition in the glomerular mesangium. IgA receptor abnormalities are implicated, including circulating IgA-soluble CD89 (sCD89) complexes and overexpression of the mesangial IgA1 receptor, TfR1 (transferrin receptor 1). Herein, we...

متن کامل

Selective Inhibitory Effect of Adenosine A1 Receptor Agonists on the Proliferation of Human Tumor Cell Lines

Background: In this study, the effects of three structural analogues of adenosine upon proliferation of human tumor cells were investigated. Previous research showed a cytotoxic effect of adenosine via A3 receptor and A1 receptor and sometimes this effect was receptor independent. The researches showed a differential cytotoxic effect of adenosine and its A3 agonists on cancerous cells, while ot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 194  شماره 

صفحات  -

تاریخ انتشار 2001